
2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 1/78

BTC Markets API (3.0.0)
API Support: support@btcmarkets.net URL: http://btcmarkets.net

Introduction

Welcome to BTC Markets API v3.

Overview

Over the past few years, we have received many feedbacks from our customers about their experience
using existing APIs in v1 and v2. With API v3, we have tried to address shortcomings in the previous
generation and also focus on improving experience for market markers, traders, institutions, and anyone
building clients on top of the API.

This new API while covers all functionality currently provided via API v1 and v2 it also offers significant
improvements compared to previous API generations including:

Improvement Description

Compatibility with common
REST API guidelines

Easier to develop apps using standard libraries in any
programming languages

Batch processing
Allowing traders to combine multiple order placements and
cancellations in a single Http request

Support for ClientOrderId
Allowing traders to use their internal order id hence better tracking
of orders

Simple and flexible APIs
e.g., no need to make multiple API calls per market. same /orders
API returns open or historical orders

|

mailto:support@btcmarkets.net
http://btcmarkets.net/

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 2/78

Improvement Description

Using Http status code for
error handling

Easier pagination

New features e.g., reports API, full orderbook data, multiple market tickers etc

Standard data formats e.g., amount as string, date/time as ISO 8601, etc

Better documentation

General notes

API endpoint

Base URL for all public and private APIs: https://api.btcmarkets.net

Path for all APIs start with /v3 . For instance the time API would be accessed via
https://api.btcmarkets.net/v3/time

Request/response format

All requests and responses use application/json content type for all APIs.

Date/time format

All APIs return date/time format in ISO 8601 with microseconds. sample time returned: 2019-08-
20T06:22:11.123456Z

Number format

Unless specified, all amounts are formatted as string . For instance when placing a new order, pass
"1.45" as the amount to buy 1.45 of LTC

At this stage, we support up to 8 digits of decimal points when processing orders, trades, and transfers.

Every market has a configuration for the number of decimal points used for pricing. For instance, for the
BAT-AUD market you can specify up to 4 decimal points for price and for amount you can specify up

to 8 decimal points. Please refer to the /v3/markets API for more information.

Sort order

https://api.btcmarkets.net/

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 3/78

By default, all lists are sorted descending, meaning the most recent records appear first in the list.

Null values

Data objects returned by the Http response will not include attributes with null values. For instance, if you
are not using clientOrderId for placing orders, then the data object returned by Http response won't include
it.

APIs defined in this document have sample response format and in some cases also an option to view the
list of all possible attributes (from the right panel)

Record Ids

Records generated by the exchange will have ids generated and represented in string format.

At this stage, some of the record ids generated by the exchange might have numbers only; however, we
can't guarantee that they continue to use numbers only as we continue to change our underlying systems.

Therefore we recommend all client apps to use string format to represent record ids to avoid bugs at a
later stage.

Rate Limits

All APIs are rate limited, and we currently measure rates over 10 seconds intervals. The default rate limit
(unless specified) for public and private APIs is up to 50 calls per 10 seconds . There are exceptions
to this rule as per below:

Name API Limit

order placement API /v3/orders POST 30 calls per 10 seconds

batch order API /v3/batchorders POST 5 calls per 10 seconds

withdraw request API /v3/withdrawals POST 10 calls per 10 seconds

creating new report API /v3/reports POST 1 call per 10 seconds

HTTP status

All APIs return commonly used HTTP statuses (e.g. 400, 401, 403, etc.) for errors and HTTP status 200 for
a successful response.

API client libraries

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 4/78

Sample code

If you are starting to develop your client app, then the following samples can be useful as they
demonstrate authentication for varies types of requests.

Node.js: https://github.com/BTCMarkets/api-v3-client-node
.NET(C#): https://github.com/BTCMarkets/api-v3-client-dotnet
Python: https://github.com/BTCMarkets/api-v3-client-python
Java: https://github.com/BTCMarkets/api-v3-client-java
Go: https://github.com/BTCMarkets/api-v3-client-go
Swift: https://github.com/BTCMarkets/api-v3-client-swift

Client SDK

Client SDKs encapsulate the underlying API calls allowing you to focus on the business logic of your
application.

coming soon...

Community SDKs and Libraries

Thanks to our active community of trading engineers.

If you develop client libraries that you believe others in the community might find useful, please let us
know, and we will list them as part of this document.

Ruby: https://github.com/2pd/btcmarkets-ruby

Help from the community

if you have a technical question, someone else might have asked and solved the same problem.

Please check out past issues here and feel free to raise new questions or issues here:

https://github.com/BTCMarkets/API/issues

Previous versions of API

You can find information about previous versions of this API here:

https://github.com/BTCMarkets/API#api-v1v2

Error handling

https://github.com/BTCMarkets/api-v3-client-node
https://github.com/BTCMarkets/api-v3-client-dotnet
https://github.com/BTCMarkets/api-v3-client-python
https://github.com/BTCMarkets/api-v3-client-java
https://github.com/BTCMarkets/api-v3-client-go
https://github.com/BTCMarkets/api-v3-client-swift
https://github.com/2pd/btcmarkets-ruby
https://github.com/BTCMarkets/API/issues
https://github.com/BTCMarkets/API#api-v1v2

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 5/78

By default, all successful requests result in HTTP 200 status and with appropriate entity is being
returned.

If any issues occur in processing the request, then a response code will be returned and a body that
contains a JSON message with more information about the underlying problem.

For instance, placing an order with an invalid amount (e.g., too low) will result in Http 400 error and a
response body of the following:

{"code":"InvalidOrderAmount", "message":"invalid order amount"}

We would encourage client app developers to use appropriate Http frameworks/libraries that allow them
to capture the body of the response for handling of errors.

HTTP status codes

The following HTTP status codes are supported, and we make our best effort to send one of the following
responses in any situation.

Http response Description

200 - OK The HTTP request was successful.

400 - Bad Request
The request failed due to a syntax error, or is missing a required
parameter

401 - Unauthorized Invalid API key or message signature generation issue

403 - Forbidden You do not have access to the requested resource

404 - Not Found The requested resource not found

429 - Too Many
Requests

You have exceeded throttle

500 - Internal Server
Error

We failed to process your request due to a server problem

502 - Bad Gateway Exchange is down or is under maintenance

API Error codes

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 6/78

While handling HTTP status codes covers requirements for most cases and client apps. However, there
are situations where having a machine-readable and specific error code would help handling specific
cases more appropriately.

For instance, when an account runs out of funds then calling API to place an order would return HTTP 400
and an error message as Insufficient fund . A client app may categorize all HTTP 400s as an
indication of an issue and halt running or log the issue for a person to investigate and fix it. However, some
apps may have application logic specifically to deal with runnning out of funds issue and this case the app
would parse the text returned by http response Insufficient fund and determines that it needs to
make a deposit.

Using the text message to make that decision might be difficult given that the text requires parsing, and in
case if the text message is updated in the future (e.g., updated to Insufficnet fund in your ETH
wallet) it may break the client application logic.

As a result, an additional error code is provided (along with the message) inside the body of the HTTP
response that can be used to handle specific situations programmatically.

Below is a sample of such error codes:

{"code":"IncorrectDecimalPoints","message":"incorrect number of decimal points for

price"}

Please refer to this section for full list of errors: Full list of error codes

We ensure that those error codes remain the same for the lifetime of the API. However, the text message
that comes with errors may change.

Also, some of the generic codes (e.g., BadRequest) may be changed to be specific codes (e.g.,
InvalidAmount) in the future (but not the other way around).

Authentication

Generate API key

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 7/78

Before you begin, please make sure to generate API keys on the website. API keys come with permission
for each area (e.g., trading, account and fundtransfer)

Authentication parameters

In order to authenticate your request, the following parameters are required:

API key
API private key
Http method: POST , GET or DELETE
Current timestamp in millisecond (you check server time by calling API /v3/time)
Path of the request (with no query string)

Authentication process

Use the following steps:

Build a string message: method + path + timestamp + data
Sign the message using Hmac512 algorithm
Add the following HTTP headers: BM-AUTH-APIKEY , BM-AUTH-TIMESTAMP and BM-AUTH-
SIGNATURE

Build message signature

The message to sign is a string concatenation of the HTTP method, API path, timestamp, and post data.

The following code sample builds the message for authenticating for /v3/reports API using HTTP
POST .

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 8/78

 var timestamp = Date now

 var path = '/v3/reports'

 var data = JSON stringify type:"TransactionReport" format:"json"

 var message = "POST" + path + timestamp + data

Replace POST with GET or DELETE for GET/DELETE APIs.
For GET and DELETE requests the data portion of the message has no value; hence, it is not added
to the message for signing.

Sign the message

The following code sample signs the message for authentication.

 var buffer = Buffer from apiPrivateKey 'base64'

 var hmac = crypto createHmac 'sha512' buffer

 var signature = hmac update message digest 'base64'

Set http headers

The following code sample sets HTTP headers for authentication.

 var headers =

 "Accept": "application/json"

 'Content-Length': Buffer byteLength data

 "Content-Type": "application/json"

 "BM-AUTH-APIKEY": apiKey

 "BM-AUTH-TIMESTAMP": timestamp

 "BM-AUTH-SIGNATURE": signature

. ();

;

. ({ , });

;

. (,);

. (,);

. (). ();

{

,

. (),

,

,

,

};

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 9/78

Sending http request

The following code sample sends http request

 var post_options =

 host: baseUrl

 path: path

 method: 'POST'

 headers: headers

 var post_req = https request post_options function res

 res on 'data' function chunk

 console log 'Http Response Code: ' + res statusCode

 console log 'Response: ' + chunk

 post_req write data

 post_req end

Pagination

API v3 is using cursor-based pagination, allowing users to retrieve a specified number of records before or
after a given number.

Pagination parameters

APIs with support for pagination will return two additional HTTP headers for each request.

BM-BEFORE

BM-AFTER

Then for those APIs, the following query parameters can be passed to handle pagination.

{

,

,

,

};

. (, () {

. (, () {

. (.);

. ();

});

});

. ();

. ();

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 10/78

Name Mandatory Description

limit no specifies how many items to return any number between 1 and 200

before no return items before given cursor

after no return items after given cursor

Pagination process

Use the following steps:

1. Call the API with no query string params (you can specify the limit)
2. Parse the HTTP response and extract the BM_BEFORE and BM-AFTER http headers
3. If you need to retrieve older records, then pass before=1234567 as query string with 1234567

being the value of HTTP header BM-BEFORE
4. If you need to retrieve newer records, then pass after=123589 as query string with 123589 being

the value of HTTP header BM-AFTER
5. Repeat from step 2

Batch processing

Batch processing is supported for order placement, cancellation, and retrieval APIs, giving more flexibility
to traders and market makers for implementing different trading strategies.

batch requests are not considerd atomic actions so each individual item inside the request is handled
separately and ensure that an individual response is present for each request.

One use case for batch processing is canceling an existing order and placing a new order with different
attributes in a single http call.

Error handling for batch requests is similar to standard REST APIs with exception that some of the error
messages are no longer returned as HTTP status.

For instance, when placing a new order, the following two error messages might be returned as a result of
invalid request:

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 11/78

request http status

using price:"12.32abc" HTTP 400 - invalid due to invalid price

placing order with insufficient fund HTTP 400 - insufficient fund

However when placing a batch requests of multiple order placements then once the content of the batch
is validated then each individual requets return an error message inside the response body hence above
errors do nnot result in http 400. Instead you should parse the response body to determine which requests
were successful.

Please refer to Batch Order Placement section for more information about how to handle the response
body and errors for batch requests.

Order Status

An order can have any of the following statues

Accepted : The order has been accepted by the trading platform
Placed : The order has been submitted to the orderbook, and appropriate funds are locked
Partially Matched : order has been partially matched
Fully Matched :
Cancelled : order has been canceled and no longer in the orderbook
Partially Cancelled : order has been canceled after partially executed
Failed : order was failed by trading engine due to issues like insufficient funds

Some of those statuses are considered final. Hence, the order can no longer be changed.

Order Types

The following order types are supported

Limit
Market
Stop Limit
Stop
Take Profit

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 12/78

Stop orders

In general, stop orders stay in the orderbook and only are activated once the trigger price of the order is
reached by the market. Upon triggering and depending on the type, the order will be placed in the
orderbook as Limit or Market order that will then executes as normal.

For Stop Limit orders, the order type attribute will be "Stop Limit", and an additional field triggerPrice
must be supplied.

For Stop orders, the order type attribute will be "Stop", and an additional field triggerPrice must be
supplied with the same number conversion as price. When triggerPrice is reached, a market order will
be executed.

For Take Profit order, the order type attribute will be "Take Profit", and an additional field triggerPrice
must be supplied with the same number conversion as price. When triggerPrice is reached, a market
order will be executed.

For both Stop orders and Take Profit orders, depending on existing orders in the orderbook and
market price at the time of triggering, they will be executed (similar to Market orders).

Client Order Id

clientOrderId is an optional parameter that can be set by the client applications to track their orders
using their internal order management system. clientOrderId is a string field between 1 to 100 with the
following characters allowed: a-z, A-Z, 0-9, - allowing standard formats like UUID. We have tried to
make a distinction between the exchange orderId and clientOrderId returning both attributes
whilst also allowing users to retrieve orders based on both attributes as well, hence APIs like
/v3/orders/{id} use id to demonstrate that either of the orderId or clientOrderId can be passed.

clientOrderId is optional for normal order placement. However, it is mandatory if you decide to use
batch order placement.

Time in force

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 13/78

timeInForce option allows traders to control order lifetime with the following possible values.

GTC : good till canceled (the default value if not specified)
IOC : immediate or cancel. The order should be canceled immediately after being placed in the

orderbook. The order may be matched against existing orders as part of the initial placement in the
orderbook, but any volume that is is left from trade matching will be canceled immediately after
placement. Therefore possible results of an order with IOC option will be either Fully Matched ,
Partially Matched , Cancelled or Partially Cancelled .
FOK : fill or kill. The order is cancelled if it's not executed fully at the time of placement. Possible

results of an order with FOK option will be either Fully Matched or Cancelled immediately.

Note When postOnly option is set to true then the only possible value for timeInForce is GTC or
do not pass any value for timeInForce.

Desired target amount

This is an optional parameter allowing traders to instruct the system to sell (or buy) as many number
of instrument as possible so that the targetAmount is reached. For example, as a trader, I'd like to
receive $100 (the target amount) by selling as many of my XRPs (the actual volume is determined by the
system at the time of placing the order). The system then makes the best effort to determine the total
volume of XRP that is needed to sell in order to generate $100, considering all trading fees, partial order
match, etc. This feature eliminates the need for traders to calculate how many XRP's are needed before
placing an order, and particularly when the market is moving quickly, this might be a difficult task. This
option also works for Bid orders with the use case being: I'd like to spend a maximum of $100 on buying
LTC and the system determines the total volume that I can purchase considering all fees.
targetAmount option is only applicable to Market orders.

Please note that price and volume are not required when using targetAmount .

Post only orders

postOnly is an optional boolean flag with true/false value. The default is false for all new orders. When
this option is set to true then it means the order should only be posted to the orderbook if it does not

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 14/78

result in any trades at the time of placement. If any part of the order results in trade execution, the order
will be canceled. Please note: once the order is accepted as part of the initial placement, then it may
execute at any later time depending on the market price movements. The option is only applied for the
time of placement. postOnly option is only applicable to Limit orders. This option is mainly useful for
market makers and liquidity providers.

Self Trade Prevention

selfTrade option allows traders to control the possibility of their own orders execute against each
other. For instance, if you already have an order already in the orderbook to buy 100 XRP for price of 0.50
and then place a new order to sell 100 XRP with the same price of 0.50, then the new sell order will be
canceled immediately and won't be submitted to the orderbook. The existing order (the buy order for 100
XRP) will continue to stay in the orderbook and will work as normal. The same is true also when the new
order has the potential to match existing orders partially. So in above sample (your existing buy order of
100 XRP) and if you place a new sell order with selfTrade option to sell 200 XRP (given that 100 of
those XRP will potentially match with an existing order that does not belong to you) then again the entire
new sell order will be cancelled immediately due to self trade option. Please also note that this option is
only checked at the time of order arrival and only once. If the order stays in the orderbook, then this option
is not applicable anymore. Possible values for selfTrade option are A (self trade is allowed that is the
default behavior) and P to prevent self trade.

Market data APIs

List active markets

Retrieves list of active markets including configuration for each market.

baseAssetName : the asset being purchased or sold. In the case of ETH-AUD the base asset is
ETH

quoteAssetName : the asset that is used to price the base asset. In the case of ETH_AUD quote
asset is AUD
marketId : market id is used across the system
minOrderAmount : minimum amount for an order

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 15/78

maxOrderAmount : maximum amount for an order
amountDecimals : maximum number of decimal places can be used for amounts.
priceDecimals : represents number of decimal places can be used for price when placing orders.

For instance for BTC-AUD market priceDecimals is 2 meaning that price of 100.12 is valid but
100.123 is not.

Responses

— 200 OK

Response samples

200

GET /v3/markets

application/json

Expand all Collapse allCopy
[

,

- {

"marketId": "BTC-AUD",

"baseAsset": "BTC",

"quoteAsset": "AUD",

"minOrderAmount": "0.0001",

"maxOrderAmount": "1000000",

"amountDecimals": "8",

"priceDecimals": "2"

}

Content type

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 16/78

- {

"marketId": "LTC-AUD",

"baseAsset": "LTC",

"quoteAsset": "AUD",

"minOrderAmount": "0.001",

" " " "

Get market ticker

Retrieves tikcer for the given marketId.

bestBid : best buy order price
bestAsk : best sell order price
lastPrice : price of the last trade
volume24 : represents total trading volume over the past 24 hours for the the given market
price24 : price change (difference between the first and last price over 24 hours)
low24 : lowest price over the past 24 hours
high24 : highest price over the past 24 hours

PATH PARAMETERS

string

Responses

— 200 OK

— 404 Market not Found

Response samples

200

marketId
required

GET /v3/markets/{marketId}/ticker

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 17/78

application/json

Expand all Collapse allCopy
{

"marketId": "BAT-AUD",

"bestBid": "0.2612",

"bestAsk": "0.2677",

"lastPrice": "0.2652",

"volume24h": "6392.34930418",

"price24h": "0.0024",

"low24h": "0.2621",

"high24h": "0.2708",

"timestamp": "2019-09-01T10:35:04.940000Z"

}

Content type

Get market trades

Retrieves list of most recent trades for the given market. this API supports pagination.

PATH PARAMETERS

string

QUERY PARAMETERS

integer <int64>

Example: before=78234976

this is part of the pagination parameters.

integer <int64>

Example: after=78234876

this is part of the pagination parameters.

integer <int32>

Example: limit=10

this is part of the pagination parameters.

marketId
required

before

after

limit

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 18/78

Responses

— 200 OK

Response samples

200

GET /v3/markets/{marketId}/trades

application/json

Expand all Collapse allCopy
[

,

- {

"id": "4107372347",

"price": "0.265",

"amount": "11.25",

"timestamp": "2019-09-02T12:49:42.874000Z",

"side": "Ask"

}

- {

"id": "4107297908",

"price": "0.265",

"amount": "250",

"timestamp": "2019-09-02T12:15:29.570000Z",

"side": "Bid"

}

]

Content type

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 19/78

Get market orderbook

Retrieves list of bids and asks for a given market. passing level=1 returns top 50 for bids and asks.
level=2 returns full orderbook (full orderbook data is cached and usually updated every 10 seconds).

Each market order is represented as an array of string [price, volume] . The attribute, snapshotId ,
is a uniqueue number associated to orderbook and it changes every time orderbook changes.

PATH PARAMETERS

string

QUERY PARAMETERS

integer

Example: level=1

specifies the depth of the orderbook. Default level is 1

Responses

— 200 OK

Response samples

200

marketId
required

level

GET /v3/markets/{marketId}/orderbook

application/json

Expand all Collapse allCopy
{

"marketId": "BAT-AUD",

"snapshotId": 1567334110144000,

Content type

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 20/78

"asks": - [

 … ,+ []

 … ,+ []

 … ,+ []

 … + []

],

"bids": - [

 … ,+ []

 … + []

]

}

Get market candles

Retrieves array of candles for a given market. Each candle record is an array of string representing
[time,open,high,low,close,volume] for the time window specified (default time window is 1 day).

This API can be used to retrieve candles either by pagination (before , after , limit) or by
specifying timestamp parameters (from and/or to). Pagination parameters can't be combined with
timestamp parameters and default behavior is pagination when no query param is specified.

When using timestamp parameters as query string, the maximum number of items that can be retrieved is
1000, and depending on the specified timeWindow this can be different time windows. For instance, when
using timeWindow=1d then up to 1000 days of market candles can be retrieved.

PATH PARAMETERS

string

QUERY PARAMETERS

string

Example: timeWindow=1h

values can be 1m , 1h and 1d representing minute, hour and day. Default
value is 1d if not specified

string
allows retrieving market candles from a specific time. The value must be
timestamp in ISO 8601 format. e.g. 2018-08-20T06:22:11.000000Z

marketId
required

timeWindow

from

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 21/78

string
allows retrieving market candles up to a specific time. The value must be
timestamp in ISO 8601 format. e.g. 2019-08-20T06:22:11.000000Z

integer <int64>

Example: before=78234976

this is part of the pagination parameters.

integer <int64>

Example: after=78234876

this is part of the pagination parameters.

integer <int32>

Example: limit=10

this is part of the pagination parameters.

Responses

— 200 OK

Response samples

200

to

before

after

limit

GET /v3/markets/{marketId}/candles

application/json

Expand all Collapse allCopy
[

Content type

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 22/78

,

- [

"2019-09-02T18:00:00.000000Z",

"15100",

"15200",

"15100",

"15199",

"4.11970335"

]

- [

"2019-09-02T17:00:00.000000Z",

"14879.75",

"15115",

"14861.99",

Get multiple tickers

This API works similar to /v3/markets/{marketId}/ticker except it retrieves tickers for a given list
of marketIds provided via query string (e.g. ?marketId=ETH-BTC&marketId=XRP-BTC).

To gain better performance, restrict the number of marketIds to the items needed for your trading app
instead of requesting all markets.

QUERY PARAMETERS

string

Responses

— 200 OK

Response samples

marketId
required

GET /v3/markets/tickers

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 23/78

200

application/json

Expand all Collapse allCopy
[

,

- {

"marketId": "BTC-AUD",

"bestBid": "9000",

"bestAsk": "9900",

"lastPrice": "8500",

"volume24h": "1444.44",

"price24h": "130",

"low24h": "12",

"high24h": "50000",

"timestamp": "2019-07-31T21:32:08.659000Z"

}

- {

"marketId": "LTC-AUD",

"bestBid": "99.12",

"bestAsk": "101.14",

"lastPrice": "100",

"volume24h": "1199.8",

"price24h": "10",

"low24h": "100",

"high24h": "120",

"timestamp": "2019-05-02T15:22:51.770000Z"

}

]

Content type

Get multiple orderbooks

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 24/78

This API works similar to /v3/markets/{marketId}/orderbook except it retrieves orderbooks for a
given list of marketIds provided via query string (e.g. ?marketId=ETH-BTC&marketId=XRP-BTC).

To gain better performance, restrict the number of marketIds to the items needed for your trading app
instead of requesting all markets.

Retrieving full orderbook (level=2), for multiple markets, was mainly provided for customers who are
interested in capturing and keeping full orderbook history. Therefore, it's recommended to call this API with
lower frequency as the data size can be large and also cached.

QUERY PARAMETERS

string

Responses

— 200 OK

Response samples

200

marketId
required

GET /v3/markets/orderbooks

application/json

Expand all Collapse allCopy
[

,

- {

"marketId": "BAT-AUD",

"snapshotId": 1567334110144000,

"asks": … + [],

"bids": … + []

}

Content type

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 25/78

Order Placement APIs

- {

"marketId": "LTC-AUD",

"snapshotId": 1567334110146000,

"asks": … + [],

"bids": … + []

}

]

Place new order

This API is used to place a new order. Some of the parameteres are mandatory as specified below. The
right panel presents the default response with primary attributes. You can also select from the drop down
to see an order response with all possible order attributes.

REQUEST BODY SCHEMA: application/json

string
specify a marketId e.g. BTC-AUD

string

string

string
Enum: "Limit" "Market" "Stop Limit" "Stop" "Take Profit"
type of the order

string
Enum: "Bid" "Ask"
side of the order

string
this is mandatory if order type is Stop, Stop Limit or Take Profit

string

marketId
required

price
required

amount
required

type
required

side
required

triggerPrice

targetAmount

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 26/78

specifiy target amount when a desired target outcome is required for order
execution

string
possible values are GTC (default option) , FOK and IOC

boolean
if this is a post-only order

string
A or P

string
a unique order id speciifed by client app.

Responses

200 OK

— 400

— 401 Not Authorized

— 403 Forbidden

Request samples

Payload Javascript

timeInForce

postOnly

selfTrade

clientOrderId

POST /v3/orders

application/json

Expand all Collapse allCopy
{

"marketId": "BTC-AUD",

"price": "100.12",

Content type

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 27/78

Response samples

200 400

"amount": "1.034",

"type": "Limit",

"side": "Bid"

}

application/json

basic order attributes

Expand all Collapse allCopy
{

"orderId": "7524",

"marketId": "BTC-AUD",

"side": "Bid",

"type": "Limit",

"creationTime": "2019-08-30T11:08:21.956000Z",

"price": "100.12",

"amount": "1.034",

"openAmount": "1.034",

"status": "Accepted"

}

Content type

Example

List orders

Returns an array of historical orders or open orders only. All query string parametesr are optional so by
default and when no query parameter is provided, this API retrieves open orders only for all markets. This
API supports pagination only when retrieving all orders status=all , When sending using
status=open all open orders are returned and with no pagination.

QUERY PARAMETERS

stringmarketId

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 28/78

Example: marketId=ETH-AUD

by default orders for all markets are returned. specify a marketId for filtering.

integer <int64>
Example: before=78234976

this is part of the pagination parameters.

integer <int64>
Example: after=78234876

this is part of the pagination parameters.

integer <int32>
Example: limit=50

this is part of the pagination parameters.

string
Enum: "open" "all"
returns orders with open status or all statuses.

Responses

— 200 OK

Response samples

200

before

after

limit

status

GET /v3/orders

application/json

Expand all Collapse allCopy
{

"orderId": "7524",

"marketId": "BTC-AUD",

"side": "Bid",

"type": "Limit",

Content type

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 29/78

"creationTime": "2019-08-30T11:08:21.956000Z",

"price": "100.12",

"amount": "1.034",

"openAmount": "1.034",

"status": "Accepted"

}

Cancel open orders

Cancels all open orders for all markets or optionally for a given list of marketIds only.

QUERY PARAMETERS

string
restricts cancellation for those given marketIds only. can be provided in the
form of marketId=BTC-AUD&marketId=ETH-AUD

Responses

200 OK

Response samples

200

marketId

DELETE /v3/orders

application/json

Expand all Collapse allCopy
[

Content type

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 30/78

,

- {

"orderId": "7524",

"clientOrderId": "123-456"

}

- {

"orderId": "435",

"clientOrderId": "abc"

}

]

Get an order

Returns an order by using either the exchange orderId or clientOrderId

PATH PARAMETERS

string

Responses

— 200 OK

— 404 Not found

Response samples

200

id
required

GET /v3/orders/{id}

application/json
Content type

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 31/78

Expand all Collapse allCopy
{

"orderId": "7524",

"marketId": "BTC-AUD",

"side": "Bid",

"type": "Limit",

"creationTime": "2019-08-30T11:08:21.956000Z",

"price": "100.12",

"amount": "1.034",

"openAmount": "1.034",

"status": "Accepted"

}

Cancel an order

Cancels a single order. this API returns http error 400 if the order is already cancelled, matched or
partially matched.

PATH PARAMETERS

string

Responses

200 OK

Response samples

id
required

DELETE /v3/orders/{id}

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 32/78

200

application/json

Expand all Collapse allCopy
{

"orderId": "7524",

"clientOrderId": "123-456"

}

Content type

Replace an Order

This API combines both cancel and placement operations in a single API call.

Upon calling this API, the system attempts to cancel the existing order, and if the cancel operation is
successful, then a new order is placed with exactly the same attributes (e.g., type, marketId, etc.) except
for price and amount that are provided as input to this API.

Note:

The underlying actions of canceling an existing order and placing a new order at this stage are not
atomic due to the asynchronous nature of the system. This means while we make the best effort to
make sure the existing order is canceled successfully before placing a new order. however, there can
be situations where the existing order may still execute and the new order is also placed. (particularly
in situations when the market moves quickly in a few milliseconds this can happen).
For simplicity, this API returns all attribute of the new order including new orderId (and new
clientOrderId, if provided)
This API also returns all possible errors that may occur during normal cancellation and order
placement

PATH PARAMETERS

string

REQUEST BODY SCHEMA: application/json

string

string

id
required

price
required

amount
required

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 33/78

string
optional. a unique order id speciifed by client app.

Responses

200 OK

— 400

Request samples

Payload

Response samples

200 400

clientOrderId

PUT /v3/orders/{id}

application/json

Expand all Collapse allCopy
{

"price": "100.12",

"amount": "1.034"

}

application/json

basic order attributes

Expand all Collapse allCopy
{

Content type

Content type

Example

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 34/78

Batch Order APIs

"orderId": "7524",

"marketId": "BTC-AUD",

"side": "Bid",

"type": "Limit",

"creationTime": "2019-08-30T11:08:21.956000Z",

"price": "100.12",

"amount": "1.034",

"openAmount": "1.034",

"status": "Accepted"

}

Place and Cancel orders

Use this API to place multiple new orders or cancel existing ones via a single request. The request for
batch processing is an array of items, and each item contains instructions for an order placement and a
cancellation. There are restrictions on the number of items in a batch (currently set to 10) so a batch can
contain up to 4 items in any form that is needed. For instance it can contain four placements (hence four
items in the array) or four cancellations or array of two items with two order placements and two
cancellations.

Batch operations are only containers for multiple requests, so each individual request is handled
separately from the rest of the requests in the batch.

Once all items in the batch are processed then a single response containing orders added and orders
cancalled is returned along with an attribute called unprocessedRequests that is an array of any item in
the batch thet can't be processed.

One major difference between processing batch requests and individual ones is error handling. In the case
of processing an individual order placement, if the request is invalid (e.g. invalid price), then a HTTP 400
error is returned. However, with batch processing (even with single item) you will receive an HTTP code of
200, and you should parse the unprocessedRequests inside the response body to determine if there are
any errors processing individual requests.

There are cases where the entire batch request is considered invalid and an HTTP error 400 is returned
(e.g., batch size exceeds the limit) so when handling batch requests, your client needs to handle HTTP

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 35/78

status codes as well as error messages inside the response body.

Another difference is that you must provide clientOrderId when placing orders in batch. This allows
items inside a batch request to be tracked and processed accurately. When cancelling orders, you can
either use orderId or clientOrderId within the request. clientOrderId is only mandatory for
creating new orders.

requestId that appears inside the `unprocessedRequests represents whatever id was used to identify
an order (e.g., clientOrderId or orderId)

One sample use case of batch processing is simulating update order in a single http call that is cancelling
an existing order and then creating a new order. In order to achieve this outcome, use the following request
sample:

In above sample, the existing order with id 27 is cancelled and a new order with id 28 will be created.

You can still take advantage of /3/batchorders{ids} in order to cancel orders and use this API for
placing orders only.

REQUEST BODY SCHEMA: application/json

Array [

object

object

]

Responses

200 OK

— 400 Bad Request

Request samples

"cancelOrder": "clientOrderId":"27" "placeOrder": "marketId":"XRP-AUD" "side"[{ { }},{ { ,

placeOrder

cancelOrder

POST /v3/batchorders

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 36/78

q p

Payload

Response samples

200 400

application/json

Expand all Collapse allCopy
[

,

- {

"placeOrder": … + { },

"cancelOrder": … + { }

}

- {

"placeOrder": … + { },

"cancelOrder": … + { }

}

]

application/json

basic order attributes

Expand all Collapse allCopy
{

"placeOrders": - [

 … + { }

],

"cancelOrders": - [

 … + { }

],

"unprocessedRequests": - [

 … ,+ { }

 … + { }

]

}

Content type

Content type

Example

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 37/78

Get orders by Id

Retrieves batch of orders by using either the exchange orderId or clientOrderId . You can specify a
comma separated list of ids /v3/batchorders/abc,dbc,3a,4

PATH PARAMETERS

string
comma delimited list of ids

Responses

— 200 OK

— 400 Bad Request

Response samples

200 400

ids
required

GET /v3/batchorders/{ids}

application/json

Expand all Collapse allCopy
{

"orders": - [

 … + { }

],

Content type

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 38/78

"unprocessedRequests": - [

 … ,+ { }

 … + { }

]

Cancel orders by Id

This API can be used to cancel a list of orders specified by id in a single request e.g.
/v3/batchorders/6,7,1

PATH PARAMETERS

string
comma delimited list of ids

Responses

— 200 OK

Response samples

200

ids
required

DELETE /v3/batchorders/{ids}

application/json

Expand all Collapse allCopy
{

"cancelOrders": - [

 … ,+ { }

 … + { }

],

Content type

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 39/78

Trade APIs

"unprocessedRequests": - [

 … + { }

]

}

List trades

Retrieves trades and optionally filters by marketId or orderId/clientOrderId. The default behavior, when no
query parameter is specified, is to return your most recent trades for all orders and markets. When a valid
order id is provided then all trades for the order is returned. provding marketId also filters trades. Mixing
orderId and marketId parameters is not supported.

QUERY PARAMETERS

string
optionally filter trades by marketId (e.g. XRP-AUD)

string
optionally list all trades for a single order

integer <int64>
Example: before=78234976

this is part of the pagination parameters.

integer <int64>
Example: after=78234876

this is part of the pagination parameters.

integer <int32>
Example: limit=10

this is part of the pagination parameters.

marketId

orderId

before

after

limit

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 40/78

Responses

— 200 OK

Response samples

200

GET /v3/trades

application/json

Expand all Collapse allCopy
[

,

- {

"id": "36014819",

"marketId": "XRP-AUD",

"timestamp": "2019-06-25T16:01:02.977000Z",

"price": "0.67",

"amount": "1.50533262",

"side": "Ask",

"fee": "0.00857285",

"orderId": "3648306",

"liquidityType": "Taker",

"clientOrderId": "48"

}

Content type

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 41/78

Fund Management APIs

- {

"id": "3568960",

"marketId": "GNT-AUD",

"timestamp": "2019-06-20T08:44:04.488000Z",

"price": "0.1362",

"amount": "0.85",

"side": "Bid",

"fee": "0.00098404",

"orderId": "3543015",

"liquidityType": "Maker"

Get trade by id

Retrieves a trade by id

PATH PARAMETERS

string

Responses

— 200 OK

id
required

GET /v3/trades/{id}

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 42/78

Request to withdraw

This API is used to request to withdraw of crypto assets or AUD .

withdrawal/deposit Status

Accepted : The withdrawal request has been accepted for processing
Pending Authorization : The withdrawal request has been accepted and is being processed
Complete : The withdrawal/deposit request has been successfully processed
Cancelled : The withdrawal request has been cancelled due to issues with the request
Failed : The withdrawal request has been failed due to a system error

REQUEST BODY SCHEMA: application/json

string
name of the asset to withdraw e.g. AUD or BTC

string
amount to withdraw

string
destination address for crypto withdrwawal. mandatory for crypto assets. For
XRP withdrawals, you can optionally add destination tag to the address with
?dt=12345 e.g. 1EJKj147QmEzywLnLpuxSr6SoPr1p62VBX?dt=123456

string
optional for AUD withdrawal. when not speciifed default bank information is
used

string
optional for AUD withdrawal. when not speciifed default bank information is
used

string
optional for AUD withdrawal. when not speciifed default bank information is
used

string
optional for AUD withdrawal. when not speciifed default bank information is
used

assetName
required

amount
required

toAddress

accountName

accountNumber

bsbNumber

bankName

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 43/78

Responses

— 200 OK

— 400

Request samples

Payload

Response samples

200 400

POST /v3/withdrawals

application/json

crypto

Expand all Collapse allCopy
{

"assetName": "XRP",

"amount": "25",

"toAddress": "abc"

}

application/json

crypto withdraw example

Expand all Collapse allCopy
{

"id": "4126657",

"assetName": "XRP",

"amount": "25",

"type": "Withdraw",

Content type

Example

Content type

Example

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 44/78

"creationTime": "2019-09-04T00:04:10.973000Z",

"status": "Pending Authorization",

"description": "XRP withdraw from [me@test.com] to Address: abc amount: 25 fee: 0",

"fee": "0",

"lastUpdate": "2019-09-04T00:04:11.018000Z"

}

List withdrawals

Returns list of withdrawals. This API supports pagination

QUERY PARAMETERS

integer <int64>
Example: before=78234976

this is part of the pagination parameters.

integer <int64>
Example: after=78234876

this is part of the pagination parameters.

integer <int32>
Example: limit=10

this is part of the pagination parameters.

Responses

— 200 OK

Response samples

before

after

limit

GET /v3/withdrawals

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 45/78

200

application/json

Expand all Collapse allCopy
[

,

- {

"id": "123989",

"assetName": "BTC",

"amount": "0.3",

"type": "Withdraw",

"creationTime": "2019-08-27T21:41:56.832000Z",

"status": "Pending Authorization",

"description": "BTC withdraw from [me@test.io] to Address: 3QJsRCW3qSinyC amount:

"fee": "0",

"lastUpdate": "2019-08-27T21:41:57.004000Z",

"paymentDetail": … + { }

}

- {

"id": "1167870",

"assetName": "AUD",

"amount": "0.15710206",

"type": "Deposit",

"creationTime": "2019-08-16T23:23:39.452000Z",

"status": "Complete",

"description": "EFT Deposit, $ 0.15710206",

"fee": "0",

"lastUpdate": "2019-08-16T23:23:39.603000Z"

}

]

Content type

Get withdraw by Id

This API is used to request to get withdraw by id.

PATH PARAMETERS

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 46/78

string

Responses

— 200 OK

— 404 Not found

Response samples

200

id
required

GET /v3/withdrawals/{id}

application/json

Expand all Collapse allCopy
{

"id": "4126657",

"assetName": "XRP",

"amount": "25",

"type": "Withdraw",

"creationTime": "2019-09-04T00:04:10.973000Z",

"status": "Pending Authorization",

"description": "XRP withdraw from [me@test.com] to Address: abc amount: 25 fee: 0",

"fee": "0",

"lastUpdate": "2019-09-04T00:04:11.018000Z"

}

Content type

List deposits

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 47/78

Returns list of depoists. This API supports pagination

QUERY PARAMETERS

integer <int64>

Example: before=78234976

this is part of the pagination parameters.

integer <int64>

Example: after=78234876

this is part of the pagination parameters.

integer <int32>

Example: limit=10

this is part of the pagination parameters.

Responses

— 200 OK

Response samples

200

before

after

limit

GET /v3/deposits

application/json

Expand all Collapse allCopy
[

Content type

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 48/78

,

- {

"id": "123989",

"assetName": "BTC",

"amount": "0.3",

"type": "Withdraw",

"creationTime": "2019-08-27T21:41:56.832000Z",

"status": "Pending Authorization",

"description": "BTC withdraw from [me@test.io] to Address: 3QJsRCW3qSinyC amount:

"fee": "0",

"lastUpdate": "2019-08-27T21:41:57.004000Z",

"paymentDetail": … + { }

}

- {

"id": "1167870",

"assetName": "AUD",

"amount": "0.15710206",

"type": "Deposit",

"creationTime": "2019-08-16T23:23:39.452000Z",

"status": "Complete",

"description": "EFT Deposit, $ 0.15710206",

"fee": "0",

"lastUpdate": "2019-08-16T23:23:39.603000Z"

}

]

Get deposit by Id

This API returns a deposit by id.

PATH PARAMETERS

string

Responses

id
required

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 49/78

— 200 OK

— 404 Not found

Response samples

200

GET /v3/deposits/{id}

application/json

Expand all Collapse allCopy
{

"id": "17866",

"assetName": "BTC",

"amount": "0.15710206",

"type": "Deposit",

"creationTime": "2019-08-16T23:19:03.553000Z",

"status": "Complete",

"description": "BITCOIN Deposit, B 0.15710206",

"fee": "0",

"lastUpdate": "2019-08-16T23:19:03.619000Z",

"paymentDetail": - {

"txId": "E1264A7D5742480B28494"

}

}

Content type

List deposits/withdrawals

A transfer record refers either to a deposit or withdraw and this API returns list of transfers covering both
depoists and withdrawals. This API supports pagination

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 50/78

QUERY PARAMETERS

integer <int64>

Example: before=78234976

this is part of the pagination parameters.

integer <int64>

Example: after=78234876

this is part of the pagination parameters.

integer <int32>

Example: limit=10

this is part of the pagination parameters.

Responses

— 200 OK

Response samples

200

before

after

limit

GET /v3/transfers

application/json

Expand all Collapse allCopy
[

Content type

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 51/78

,

- {

"id": "123989",

"assetName": "BTC",

"amount": "0.3",

"type": "Withdraw",

"creationTime": "2019-08-27T21:41:56.832000Z",

"status": "Pending Authorization",

"description": "BTC withdraw from [me@test.io] to Address: 3QJsRCW3qSinyC amount:

"fee": "0",

"lastUpdate": "2019-08-27T21:41:57.004000Z",

"paymentDetail": … + { }

}

- {

"id": "1167870",

"assetName": "AUD",

"amount": "0.15710206",

"type": "Deposit",

"creationTime": "2019-08-16T23:23:39.452000Z",

"status": "Complete",

"description": "EFT Deposit, $ 0.15710206",

"fee": "0",

"lastUpdate": "2019-08-16T23:23:39.603000Z"

}

]

Get deposits/withdrawals by Id

This API retruns either deposit or withdrawal by id

Responses

— 200 OK

— 404 Not found

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 52/78

Response samples

200

GET /v3/transfers/{id}

application/json

Expand all Collapse allCopy
{

"id": "17866",

"assetName": "BTC",

"amount": "0.15710206",

"type": "Deposit",

"creationTime": "2019-08-16T23:19:03.553000Z",

"status": "Complete",

"description": "BITCOIN Deposit, B 0.15710206",

"fee": "0",

"lastUpdate": "2019-08-16T23:19:03.619000Z",

"paymentDetail": - {

"txId": "E1264A7D5742480B28494"

}

}

Content type

Get deposit address

returns deposit address for the given asset

QUERY PARAMETERS

string
asset name for the deposit address

assetName
required

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 53/78

Responses

— 200 OK

Response samples

200

GET /v3/addresses

application/json

Expand all Collapse allCopy
{

"address": "1BvBMSEYstWetqTFn5Au4m4GFg7xJaNVN2",

"assetName": "BTC"

}

Content type

get withdrawal fees

Returns fees associated with withdrawals. This API is public and does not require authentication as the
fees as system wide and published on the website

Responses

— 200 OK

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 54/78

Response samples

200

GET /v3/withdrawal-fees

application/json

Expand all Collapse allCopy
[

,

- {

"assetName": "AUD",

"fee": "0"

}

,

- {

"assetName": "BTC",

"fee": "0.0003"

}

- {

"assetName": "BCHABC",

"fee": "0.001"

}

]

Content type

List assets

Retrieves list of assets including configuration

assetName : name of the asset that us used for trading or investment
minDepositAmount : minimum amount to deposit
maxDepositAmount : maximum amount to deposit
depositFee : deposit fee
depositDecimals : number of decimal places allowed for deposits
minWithdrawalAmount : minimum amount to withdraw
maxWithdrawalAmount : maximum amount to withdraw
withdrawalFee : withdrawal fee
withdrawalDecimals : number of decimal places allowed for withdrawals

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 55/78

Responses

— 200 OK

Response samples

200

GET /v3/assets

application/json

Expand all Collapse allCopy
[

- {

"assetName": "BTC",

"minDepositAmount": "0.0001",

"maxDepositAmount": "1000000",

"depositDecimals": "8",

"minWithdrawalAmount": "0.0001",

"maxWithdrawalAmount": "1000000",

"WithdrawalDecimals": "8",

"withdrawalFee": "0",

"depositFee": "0"

}

]

Content type

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 56/78

Account APIs

Get trading fees

Returns 30 day trading fee volume plus trading fee per market covering marker and taker .

Responses

— 200 OK

Response samples

200

GET /v3/accounts/me/trading-fees

application/json

Expand all Collapse allCopy
{

"volume30Day": "0.0098275",

"feeByMarkets": - [

 … ,+ { }

 … ,+ { }

 … + { }

]

Content type

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 57/78

}

Get withdrawal limits

This API is used

GET /v3/accounts/me/withdrawal-limits

Get balances

Returns list of assets covering balance, available, and locked amount for each asset due to open orders or
pending withdrawals. This formula represents the relationship between those three elements: balance =
available + locked

Responses

— 200 OK

Response samples

200

GET /v3/accounts/me/balances

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 58/78

application/json

Expand all Collapse allCopy
[

,

- {

"assetName": "LTC",

"balance": "5",

"available": "5",

"locked": "0"

}

- {

"assetName": "ETH",

"balance": "1.07583642",

"available": "1.0",

"locked": "0.07583642"

}

]

Content type

Get transactions

Returns detail ledger recoerds for underlying wallets. This API supports pagination.

QUERY PARAMETERS

string
Example: assetName=BTC

filter transactions for specific asset

integer <int64>
Example: before=78234976

this is part of the pagination parameters.

integer <int64>
Example: after=78234876

this is part of the pagination parameters.

integer <int32>
Example: limit=10

this is part of the pagination parameters.

assetName

before

after

limit

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 59/78

Responses

— 200 OK

Response samples

200

GET /v3/accounts/me/transactions

application/json

Expand all Collapse allCopy
[

,

- {

"id": "1759",

"creationTime": "2015-02-21T21:49:54.911000Z",

"description": "Sell 0.3000BTC @ AUD 200.0000 Trading fee",

"assetName": "AUD",

"amount": "0.5082",

"balance": "81.9401",

"type": "Trading Fee",

"recordType": "Trade",

"referenceId": "17949"

}

Content type

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 60/78

Report APIs

,

- {

"id": "17958",

"creationTime": "2015-02-21T21:49:54.906000Z",

"description": "Sell 0.3000BTC @ AUD 200.0000 Trade settled",

"assetName": "AUD",

"amount": "60",

"balance": "82.4483",

"type": "Sell Order",

"recordType": "Trade",

"referenceId": "17949"

}

,

- {

"id": "15160",

"creationTime": "2014-11-12T11:30:02.773000Z",

"description": "Sell 0.1000BTC @ AUD 4.5100 Fully matched at 4.5100",

"assetName": "BTC",

"amount": "0.1",

"balance": "99.144778",

"type": "Sell Order",

"recordType": "Trade",

"referenceId": "14435"

}

- {

"id": "8809",

"creationTime": "2014-10-05T21:18:19.714000Z",

"description": "XRP deposit was successfull.Reference: 1",

"assetName": "XRP",

"amount": "100",

"balance": "100",

"type": "Deposit",

Create new report

request to generate a new report.

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 61/78

REQUEST BODY SCHEMA: application/json

string
type of the report. the only accepted value is TransactionReport at this
stage.

string
value can be either csv or json

Request samples

Payload

type
required

format
required

POST /v3/reports

application/json

Expand all Collapse allCopy
{

"type": "TransactionReport",

"format": "json"

}

Content type

Get report by id

This API returns details of the report once it's been created via the previous API.

On average report generation takes about 20 seconds so please allow at least 10 seconds and
recommended 30 seconds before attempting to get detail of the report after requesting it via the previous
API. Trying too quickly to get detail a newly created report will result in http 404 response. A successful
response of this API contains a link that you can use to download the report content.

The attribute contentUrl inside the above response is a link to download the report content (in either
json or csv format). Please note that report content files are only available for download for up to 30

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 62/78

minutes after creation time.

Transaction report covers all historical changes made to all of your wallets including deposit/withdrawals,
order executions and trading fees.

sample report content in json format:

referenceId in this report represents either orderId or id of the fund transfer.
For orders, multiple transactions will have the same referenceId that covers increase/decrease
amounts in corresponding wallets (e.g. buy BTC using AUD wallet) and also fees paid.
recordType can be either "Fund Transfer" (representing deposits and withdrawals) or "Trade"

(representing buys, sells, and trading fees)
balance represents the balance after each transaction

PATH PARAMETERS

string

Responses

— 200 OK

Response samples

200

"transactionId" "12345" "creationTime" "2017-12-11T06:01:28Z" "recordType" "Fund
 "transactionId" "830309" "creationTime" "2018-07-11T06:26:34Z" "recordType" "Tra
 "transactionId" "830310" "creationTime" "2018-07-11T06:26:34Z" "recordType" "Tra
 "transactionId" "830311" "creationTime" "2018-07-11T06:26:34Z" "recordType" "Tra

[{ : , : , :
{ : , : , :
{ : , : , :
{ : , : , :

reportId
required

GET /v3/reports/{id}

application/json

Expand all Collapse allCopy

Content type

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 63/78

Misc APIs

{

"id": "jsqmkd72lmd13cd0",

"contentUrl": "https://report.s3.ap-southeast-2.amazonaws.com/jsqmkd72lmd13cd0",

"creationTime": "2019-08-20T18:08:06.110000Z",

"type": "TransactionReport",

"status": "Complete",

"format": "json"

}

Get server time

Returns the server time.

Responses

— 200 OK

Response samples

200

GET /v3/time

application/json
Content type

https://report.s3.ap-southeast-2.amazonaws.com/jsqmkd72lmd13cd0

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 64/78

List of API error codes

Below covers all error codes returned by API

Error Code Description Category

InvalidPrice invalid order price orders

InvalidAmount invalid order amount orders

InvalidTriggerPrice invalid trigger price orders

InvalidTargetAmount orders

InvalidOrderSide orders

InvalidOrderType orders

TradingNotAvailable orders

TradingNotAvailableForMarket orders

OrderTypeNotAvailable orders

InvalidTimeInForceOption orders

InvalidSelfTradeOption orders

InvalidOrderId orders

OrderNotFound orders

DuplicateClientOrderId orders

InvalidClientOrderId orders

InsufficientFund orders

OrderAlreadyCancelled orders

Expand all Collapse allCopy
{

"timestamp": "2019-09-01T18:34:27.045000Z"

}

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 65/78

Error Code Description Category

OrderBeingCancelled orders

OrderStatusIsFinal orders

TradeNotFound orders

IncorrectDecimalPoints orders

FeatureNotAvailableForMarket orders

InvalidAPIKey auth

InvalidAuthTimestamp auth

InvalidAuthSignature auth

InsufficientAPIPermission auth

InvalidMarketId market symbol is invalid common

InvalidAccount something is wrong with accont setup common

InvalidBatchRequest common

InvalidParameterCombination common

DuplicateIdInRequest common

InvalidIdParameter common

InvalidPaginationParameter common

InvalidFeatureCombination common

MissingArgument common

FeatureNotAvailable common

MissingArgument common

InvalidAssetName common

AmountExceedAvailableFund fund

AmountIsTooLow fund

WithdrawIsNotAvailable fund

TransferNotFound fund

DepositAddressNotAvailable fund

InvalidAddress fund

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 66/78

Error Code Description Category

MarketNotFound market

InvalidTimeWindow market

InvalidTimestamp market

InvalidOrderbookLevel market

ReportNotFound report

InvalidReportParameter report

BadRequest http status

UnAuthorized http status

Forbidden http status

NotFound http status

TooManyRequests http status

InternalServerError http status

BadGateway http status

WebSocket Overview

BTC Markets' WebSocket feed provides real-time market data covering orderbook updates, order life cycle
and trades.

In order to start receiving real time messages, a WebSocket connection needs to be made followed by a
message to subscribe to channels and also marketIds you are interested in.

Endpoint

The endpoint for WebSocket v2 is: wss://socket.btcmarkets.net/v2

Channels

tick , trade , orderbook , orderbookUpdate , orderChange , fundChange , heartbeat

MarketIds

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 67/78

Market ids represent a market and are used in order to filter events for only specific markets you are
interested in.

You should be able to get list of active markets from here: https://api.btcmarkets.net/v3/markets

Format: BTC-AUD , XRP-BTC , etc.

Note: marketIds are only applicable to public events (e.g. tick , orderbook , trade)

Message types

All messages published include a json attribute called messageType that represents type of event
that is being received.

Those message types events include:

tick

trade

orderbook

orderbookUpdate

orderChange

fundChange

error

heartbeat

Subscriptions

Sending subscribe message allows you to start receiving events for the specified channels and
marketIds. If you need to change subscription then simply send a new subscribe message with new
channel names and marketIds.

Managing subscriptions

Whilst sending subscribe message works in most situations, however you may want to have the
flexibility to add or remove subscriptions instead of subscribing to all channels/markets at the same time.

In those situations send the same subscription message (all rules applies for authentication, marketIds,
etc) and the message type will be addSubscription or removeSubscription . If you need to remove
subscription for all markets fo a given channel, just send empty list of marketIds.

Notes when using addSubscription and removeSubscription

In order to use those messages, you will need an existing subscription so make sure to send a valid
subscription message ast least once.
With your subscription message (and also add/remove messages) send additional parameter:
clientType: "api" .

Client libraries

Below are working example of how to connect to this WebSocket feed in different languages:

https://api.btcmarkets.net/v3/markets

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 68/78

Javascript: https://github.com/ngin-io/websocket-client-node
Java: https://github.com/ngin-io/websocket-client-java
Python: https://github.com/ngin-io/websocket-client-python

Rate limit

New connections to the WebSocket feed are rate limited to 3 attempts per 10 seconds per IP. Frequent
WebSocket connections that exceed the rate limit will be closed by the server.

Connection issues

From time to time your WebSocket connection may be disconnected (e.g. as we upgrade software on our
servers). We recommend adding logic to your client in order to refresh your connection every 24 hours or
in case if the connection drops out.

WebSocket Public Events

Tick event

The tick event is published every time lastPrice , bestBid or bestAsk is updated for a market
which is the result of orderbook changes or trade matches.

sample event:

 marketId 'BTC-AUD'

 timestamp '2019-04-08T18:56:17.405Z'

 bestBid '7309.12'

 bestAsk '7326.88'

 lastPrice '7316.81'

 volume24h '299.12936654'

 messageType 'tick'

{ : ,

: ,

: ,

: ,

: ,

: ,

:

}

https://github.com/ngin-io/websocket-client-node
https://github.com/ngin-io/websocket-client-java
https://github.com/ngin-io/websocket-client-python

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 69/78

Trade event

In order to receive trade events please add trade to the list of channels when subscribing via
WebSocket.

sample event:

 marketId 'BTC-AUD'

 timestamp '2019-04-08T20:54:27.632Z'

 tradeId 3153171493

 price '7370.11'

 volume '0.10901605'

 side 'Ask'

 messageType 'trade'

Orderbook event

In order to receive orderbook events please add orderbook to the list of channels when subscribing
via WebSocket. The current orderbook event represents the latest orderbook state and maximum 50 bids
and asks are included in each event.

For efficiency the bids and asks are are published as arrays of tuples representing [price,
volume] each order in the orderbook.

sample event:

 marketId: 'BTC-AUD'

 timestamp: '2019-04-08T22:23:37.643Z'

 bids:

 '7418.46' '0.04'

 '7418.45' '0.56'

 '7100' '0.01'

 asks:

 '7437.53' '0.76'

 '7437.54' '0.3646349'

 '7446.94' '0.6'

 '7700' '0.1'

{ : ,

: ,

: ,

: ,

: ,

: ,

:

}

{ ,

,

[[,],

[,],

[,]]

[[,],

[,],

[,],

[,]]

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 70/78

 messageType: 'orderbook'

OrderbookUpdate event

In many cases, it's more appropriate to maintain a local copy of the exchange orderbook by receiving only
updates instead of the entire orderbook.

Some advantages of using orderbookUpdate vs orderbook are:

1. orderbook event only delivers top 50 orders whereas orderbookUpdate covers the entire
orderbook

2. orderbook uses larger bandwidth due to the size of the messages always that includes 50
bids/asks, whereas orderbookUpdate only delivers small incremental changes

3. We make the best effort to deliver all individual updates to the orderbook via orderbookUpdate
message. However, orderbook may send a single message if two updates happen at a very close
millisecond interval

Orderbook snapshot message:

Subscribing to orderbookUpdate channel allows you to receive a snapshot of the orderbook at first
(immediately after subscription), and then the subsequent messages only provide updates to the
orderbook. The initial orderbook snapshot message covers all bids/asks represented as arrays of [price,
volume, count] tuples as well as snapshot:true attribute.

Sample snapshot message:

 marketId: 'LTC-AUD'

 snapshot: true

 timestamp: '2020-01-08T19:47:13.986Z'

 snapshotId: 1578512833978000

 bids:

 '99.57' '0.55' 1

 '97.62' '3.20' 2

 '97.07' '0.9' 1

 '96.7' '1.9' 1

 '95.8' '7.0' 1

 asks:

 '100' '3.79' 3

 '101' '6.32' 2

 messageType: 'orderbookUpdate'

}

{ ,

,

,

,

[[, ,],

[, ,],

[, ,],

[, ,],

[, ,]],

[[, ,],

[, ,]],

}

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 71/78

Orderbook update message:

The message format for subsequent orderbook updates is the same as the initial snapshot except that it
does not have the element snapshot:true in it. The subsequent messages only provide updates to the
orderbook. The update message is in the form of an array of [price, volume, count] tuples aggregating
order volumes for a given price and total number of orders for that price. For instance, ["99.57","0.55",2]
means the total volume of bids for the price of 99.57 is 0.55 , and there is a single order with that
price.

Sample update message:

 marketId: 'LTC-AUD'

 timestamp: '"2020-01-08T19:47:24.054Z'

 snapshotId: 1578512844045000

 bids: '99.81' '1.2' 1 '95.8' '0' 0

 asks: '100' '3.2' 2

 messageType: 'orderbookUpdate'

How to use orderbook updates:

In above sample update message:

A new bid order has been added to the orderbook with price of 99.81 and total volume of 1.2
The bid order with price of 95.8 has been removed from the orderbook (hence both the volume and
count are zero)
The total volume and order count for ask order with price of 100 has been changed. New total volume
is 3.2 and 2 orders with that price

Assuming you have a local copy of the exchange orderbook (as per sample snapshot above) then applying
orderbook update means:

Add a new bid order tuple with price of 99.81 to your orderbook copy
Remove the bid order tuple with price of 95.8 from your orderbook copy
Replace the ask order tuple with price of 100 with new volume and count in your orderbook copy

Maintaining a local copy of the exchange orderbook

The following steps can be used to maintain an up-to-date copy of the exchange orderbook for a given
market:

Subscribe to orderbookUpdate channel and provide a marketId
Start to queue all incoming messages
As soon as you receive a message with snapshot:true then keep it as your local orderbook copy
Iterate through the items in the queue and apply changes to your local orderbook copy
When applying items from the queue, disregard items with snapshotId smaller or equal to the
snapshotId of your local orderbook copy

{ ,

,

,

[[, ,], [, ,]],

[[, ,]],

}

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 72/78

Once all items in the queue are processed then your local orderbook copy is up to date
Now apply all incoming messages as they arrive

It's a good practice to refresh your copy at some interval (e.g. once every few hours)

Heartbeat event

if you subscribe to heartbeat event then the server will send you a heartbeat event every 5 seconds.

heartbeat event: javascript { messageType: 'heartbeat', channels: [{ name:
'orderChange' }, { name: 'orderbook', marketIds: ['BTC-AUD', 'XRP-AUD'] }, { name:

'heartbeat' }] } Note: Once a new subscription request is confirmed, a single heartbeat event is
published to the client in order to confirm the connection working. This is regardless of requesting to
subscribe to heartbeat channel.

Error event

In case of errors, a message type of error is published.

Authentication error

Invalid input error

Internal server error

Throttle error

sample error events:

Invalid Channel names

 messageType: 'error'

 code: 3

 message: 'invalid channel names'

Invalid MarketIds

{

,

,

}

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 73/78

 messageType: 'error'

code: 3

message: 'invalid marketIds'

Authentication error

 messageType: 'error'

code: 1

message: 'authentication failed. invalid key'

Sample code (javascript)

Below sample code connects to tick channel. The same code can be used to subscribe to other public
channels including heartbeat.

 const WebSocket = require 'ws'

 const ws = new WebSocket 'wss://socket.btcmarkets.net/v2'

 var request =

 marketIds:marketIds

 channels: channels

 messageType: 'subscribe'

 ws on 'open' function open

 ws send JSON stringify request

 ws on 'message' function incoming data

 console log data

WebSocket Private Events

{ ,

,

}

{ ,

,

}

();

();

{

,

,

}

. (, () {

. (. ());

});

. (, () {

. ();

});

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 74/78

Authenticated events

Receiving events about life cycle of your orders require sending authentication information when
subscribing to events. The authentication is similar to public trading API authentication using your API key
and secret to sign the message when subscribing via WebSocket.

Below is sample javascript code with authentication:

 const crypto = require 'crypto'

 const WebSocket = require 'ws'

 const key = 'your api key'

 const secret = 'your api key secret'

 const ws = new WebSocket 'wss://socket.btcmarkets.net/v2'

 const now = Date now

 const strToSign = "/users/self/subscribe" + "\n" + now

 const signature = signMessage secret strToSign

 var request =

 marketIds: 'BTC-AUD'

 channels: 'orderChange' 'heartbeat'

 key: key

 signature: signature

 timestamp: now

 messageType: 'subscribe'

 ws on 'open' function open

 ws send JSON stringify request

 ws on 'message' function incoming data

 console log data

 function signMessage secret message

 var key = Buffer from secret 'base64'

 var hmac = crypto createHmac 'sha512' key

 var signature = hmac update message digest 'base64'

();

();

;

;

();

. ();

;

(,);

{

[],

[,],

,

,

,

}

. (, () {

. (. ());

});

. (, () {

. ();

});

(,) {

. (,);

. (,);

. (). ();

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 75/78

 return signature

Order life cycle events

Below are events that are published for every step of order processing.

Placed

 orderId: 79003

 marketId: 'BTC-AUD'

 side: 'Bid'

 type: 'Limit'

 openVolume: '1'

 status: 'Placed'

 triggerStatus: ''

 trades:

 timestamp: '2019-04-08T20:41:19.339Z'

 messageType: 'orderChange'

Fully Matched

 orderId 79033

 marketId 'BTC-AUD'

 side 'Bid'

 type 'Limit'

 openVolume '0'

 status 'Fully Matched'

 triggerStatus ''

 trades

 tradeId 31727

 price" '0.1634'

 volume" '10'

 fee '0.001'

 liquidityType 'Taker'

 timestamp '2019-04-08T20:50:39.658Z'

 messageType 'orderChange'

;

}

{ ,

,

,

,

,

,

,

[],

,

}

{ : ,

: ,

: ,

: ,

: ,

: ,

: ,

: [{

: ,

: ,

: ,

: ,

:

}],

: ,

:

}

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 76/78

Cancelled

 orderId 79003

 marketId 'BTC-AUD'

 side 'Bid'

 type 'Limit'

 openVolume '1'

 status 'Cancelled'

 triggerStatus ''

 trades

 timestamp '2019-04-08T20:41:41.857Z'

 messageType 'orderChange'

Partially Matched

 orderId 79003

 marketId 'BTC-AUD'

 side 'Bid'

 type 'Limit'

 openVolume '1'

 status 'Partially Matched'

 triggerStatus ''

 trades

 tradeId 31927

 price "0.1634'

 volume "5'

 fee '0.001'

 liquidityType 'Taker'

 timestamp '2019-04-08T20:41:41.857Z'

 messageType 'orderChange'

Triggered

This event is published when Stop Limit orders are triggered.

 orderId 7903

 marketId 'BTC-AUD'

 side 'Bid'

 type 'Limit'

 openVolume '1.2'

 status 'Placed'

 triggerStatus 'Triggered'

 trades

{ : ,

: ,

: ,

: ,

: ,

: ,

: ,

: [],

: ,

:

}

{ : ,

: ,

: ,

: ,

: ,

: ,

: ,

: [{

: ,

: ,

: ,

: ,

:

}]

: ,

:

}

{ : ,

: ,

: ,

: ,

: ,

: ,

: ,

: [],

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 77/78

 timestamp '2019-04-08T20:41:41.857Z'

 messageType 'orderChange'

Notes:

Fully Matched and 'Partially Matched' events also include a list of trades that are the result of
trade execution for that specific instance.
In case if two or more events are published by trading engine at the same time then only the last event
is published. For instance in the case of a Stop order being triggered and matched at the same time
then a single event is published.

Fund transfer events

Those events are published when deposit or withdraws of funds are requested by a user or approved by
the system (and result in balance updates). Channel name used is fundChange .

 fundtransferId 276811

 type 'Deposit'

 status 'Complete'

 timestamp '2019-04-16T01:38:02.931Z'

 amount '0.001'

 currency 'BTC'

 fee '0'

 messageType 'fundChange'

Note: status of a withdraw request is Pending Authorization when it's requested in the first place and
before it becomes Complete .

: ,

:

}

{

: ,

: ,

: ,

: ,

: ,

: ,

: ,

:

}

2020/10/22 BTC Markets API v3

https://api.btcmarkets.net/doc/v3 78/78

